Hemos confiado nuestras vida a las baterías de toda clase de cosas, desde los teléfonos celulares y los coches a las linternas, pero últimamente la fe en la tecnología se ha debilitado. En las últimas semanas, muchos pasajeros de aviones han tenido que entregar sus teléfonos Galaxy Note 7 porque se considera que sus baterías pueden provocar incendios, mientras que las que se llevaron a la bodega han retrasado el vuelo y asustado a los viajeros.
Se suponía que estas baterías eran el remedio a un diseño anterior, del cual se retiraron dos millones y medio de unidades en septiembre al juzgar igualmente que entrañaban peligro de incendio. Otras baterías de celulares también han resultado tener tendencia a inflamarse.
Mientras tanto, hace algunos meses, las líneas aéreas prohibieron los aeropatines, otra vez porque se declaró que sus baterías eran fácilmente inflamables. A esto se añade que estamos registrando cientos de percances con baterías que se inflaman en los coches eléctricos, especialmente en China. ¿Cuál es la causa de todos estos problemas?

La llegada del litio
La historia empieza a principios de la década de 1990 con la llegada de las baterías de iones de litio como un componente corriente de los teléfonos celulares y otros aparatos. El litio es un elemento metálico ligero menos tóxico que los materiales que se utilizaban anteriormente, como el cadmio o el plomo. A diferencia de las antiguas pilas de “usar y tirar”, las de litio normalmente se pueden recargar miles de veces.
La otra ingeniosa innovación de las baterías de iones de litio consiste en el detallado diseño estructural compacto a base de capas. Estas optimizan los itinerarios térmicos y el control del sistema de alimentación adjunto, dirigido por un software, que (normalmente) evita que el acumulador se sobrecargue o se sobredescargue.
Desde mediados de la década de 1990, estos diseños se han ido refinando cada vez más gracias a las inversiones sin límite en esta tecnología. La densidad de energía que pueden alcanzar las baterías ha pasado de 100 a 270 vatios hora por kilo, lo que significa que se puede tener mucha más energía en mucho menos espacio. Como es lógico, esto ha sido crucial para el avance de los nuevos aparatos electrónicos de consumo, en los que el tamaño y el peso de los dispositivos son argumentos comerciales determinantes.
Pero, a más energía, más calor, y cuando los componentes se calientan dentro de la batería, aumenta la importancia de la carcasa y el espacio físico para la expansión. La carrera por producir aparatos cada vez mejores y hacerse con la cuota de mercado de los rivales ha exigido muchísima manufacturación. Al parecer, en el proceso no se ha prestado suficiente atención a este asunto del calentamiento, y están apareciendo nuevos productos que no se han sometido a periodos de prueba suficientes.
El resultado han sido baterías en las que la fricción repentina o el calor externo puede originar una explosión espontánea, lo cual no sólo produce daños a la propia batería, sino que a veces también prende fuego a lo que hay a su alrededor. Empezamos a detectar estos problemas hace alrededor de una década, pero ahora se han vuelto más frecuentes, evidentemente con resultados que pueden ser desastrosos para las empresas en cuestión.
Desde el punto de vista del consumidor, hay un par de respuestas posibles: aceptar baterías de vida más breve y recargar el aparato más a menudo, o ser de los últimos en adoptar las tecnologías de vanguardia. 
Al fin y el cabo, en nuestros días, ser de los últimos sólo significa esperar unos seis meses.

A prueba de futuro
Cabe preguntarse si hay más peligros al acecho. Por desgracia, la respuesta es sí. El apetito de inversiones en baterías está generando toda una gama de aparatos para uso a gran escala, como los parques de baterías destinados a futuras zonas residenciales y a lo que en ocasiones se denomina ciudades inteligentes y resilientes. Estos parques servirían para facilitar el suministro eléctrico, ofrecer almacenamiento de emergencia y acumular energía de fuentes como las granjas eólicas que no pueden producir ininterrumpidamente.
La idea es excelente. En Estados Unidos y en Europa ya se están utilizando varios sistemas que emplean baterías de flujo que contienen litio o vanadio para abastecer de energía a zonas residenciales. Por ejemplo, la pequeña ciudad de Braderup, en el norte de Alemania, tiene un sistema que produce dos megavatios de potencia y puede acumular dos megavatios hora, más o menos lo que genera en tres horas una turbina eólica costera media, por poner un ejemplo. 
China ha sido un actor líder en el sector. Según la información disponible, la actual planta experimental de Zhangbei, una ciudad cercana a Pekín, está probando sistemas a 14 megavatios y acaba de anunciar que proyecta crear una única instalación de acumulación de 500 megavatios hora con la intención de distribuir 65 gigavatios de potencia a lo largo y ancho de China de aquí a 2020, una cantidad posiblemente suficiente para abastecer a 50 millones de hogares.
El problema es que la simple intensidad y la escala de energía en esa clase de parques entraña un riesgo potencial grave de explosión e incendio. Si se quieren evitar estas consecuencias, los diseñadores tendrán que aprender las lecciones de las baterías más pequeñas. Será esencial prestar la máxima atención a la seguridad y realizar las pruebas correctas.
Aparte de estos riesgos, no debemos olvidar que las baterías consumen gran cantidad de recursos. Tampoco se suele hablar del alto coste de su reutilización y reciclado. En definitiva, el auténtico reto y la auténtica oportunidad consisten en intentar acumular energía sin utilizar baterías. 
Esto, sin embargo, es una historia muy diferente.

Leave a comment

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *